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Overview

● Introduction to muon accelerators

● Beam dynamics requirements

● Target analysis
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Introduction to Muon Accelerators

● High-power target
◆ Generally at least 1 MW of protons on target, often talk of 4 MW
◆ Different types of targets proposed

★ Liquid mercury (Wood’s metal) jet
➣ High velocity
➣ In magnetic field
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★ Solid stationary targets
★ Moving solid targets
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● Phase rotation
◆ Large energy spread coming from target:±50%
◆ Must be reduced to about±25% for downstream systems
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● Ionization cooling
◆ Reduction of transverse (and sometimes longituindal) emittance
◆ Requires beam to pass through material, RF to restore lost energy
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● Acceleration
◆ May use Fixed Field Alternating Gradient Accelerators (FFAGs)

★ Magnets don’t ramp, have factor of 2 or more in energy in same arc

● Storage ring
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Beam Dynamics: System Characteristics

● Beamlines must accept large energy spreads
◆ After target: KE from almost 0 to 300 MeV or more
◆ In cooling:±25%
◆ In acceleration: FFAGs have single beamline with a factor of2 or

more in energy
● Large transverse emittances

◆ Typically the beam pipe is at 2-3σ
◆ In cooling: maximum angles are around 0.1–0.2 rad

★ Needed to keep multiple scattering under control
● Magnets are not separate, constant-field objects

◆ Fields of adjacent magnets overlap
◆ Fields are far from constant
◆ Magnets are short compared to their apertures

★ End fields are a significant contribution to the dynamics
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Field Profile: Cooling Cell
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Field Profile: FFAG Cell
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Requirements for Lattice Codes

● Correctly handle huge energy spreads, beam sizes

◆ Don’t approximate Hamiltonian!
◆ Truncated power series present problems

★ Feed-down prevents composition of maps
★ Usually work fine for short magnets, cells

● Correctly handle non-constant fields

◆ Longitudinal field variation leads to higher-order fields from
Maxwell’s equations

◆ Model ends of magnets

● Separate coordinate system geometry from fields
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10-cell FFAG Lattice
Power Series Feed-Down
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RFOFO Ring
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RFOFO: Bz
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RFOFO: By
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RFOFO: Bx
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Analysis and Tracking

● Analysis codes:
◆ Often have trouble with large energy ranges
◆ Need to take into account cooling and multiple scattering insome

averaged sense
◆ Don’t always match tracking (different models)
◆ Need to be able to optimize rather arbitrary quantities

● Tracking codes:
◆ Field computations are often slow: complex field model
◆ Need many particles to compare designs accurately (poor statistics)

● Subroutine/class libraries may be more useful that monolithic tracking
codes
◆ We want non-standard quantities
◆ Our systems often are not described in terms of standard elements
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Particle Creation/Energy Deposition

● Need to be able to compute

◆ Produced particle spectrum, including energy and angular spectrum
★ Total number important for preducting performance, protonpower

requirements
★ Spectrum needed for design of muon transport systems

◆ Energy deposition in materials
★ Needed for design of cooling systems
★ Irradiation of materials: lifetime, degradation of properties, radiation

protection

● Several codes which do this (MARS, FLUKA, MCNPX, . . . )

◆ Significant disagreements in some cases (30%?)
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Solid Targets

● Solid targets frequently break: need to predict this behavior

● Causes

◆ Shock waves from beam hitting target
★ We think we can model this fairly well
★ Need accurate computation of energy deposition

◆ Degradation of material properties under irradiation
★ This we don’t understand well at this point

19



Coef. of Thermal Expansion vs.
Irradiation
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Liquid Jet Targets

● Need to predict evolution of target

◆ Will the target be stable enough to hit? Need to be able to design it!
◆ Will the target be there for the next pulse?
◆ Will the jet interfere with particle transport (this or nextpulse)?
◆ How does the jet evolve in a varying magnetic field?

● Codes exist (e.g., FRONTIER) which solve for evolution of surface

◆ Cavitation caused by energy deposition and turbulence is important
◆ Need model for cavitation sources!
◆ Two models for cavitation in code

★ Individual bubbles: only realistic in 2-D (3-D wouulde be nice)
★ “Bubbly fluid” equation of state
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Mercury Target
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Individual Bubbles and EOS Model
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Cavity Breakdown

● We need to run cavities at high gradients, epecially for cooling

● Need to predict/prevent breakdown

● Good models are lacking at this point
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Concluding Comments

● Large beam sizes in muon accelerators require codes that arecareful to
do things correctly over large ranges of phase space variables

● Target design requires a greater understanding of the physics in the
targets and incorporation of that into predictive design codes
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